

Basic level When a body is moving on a surface, the force of friction is called 1. [MP PET 2002] (a) Static friction (b) Dynamic friction (c) Limiting friction (d) Rolling friction 2. Which one of the following is not used to reduce friction [Kerala (Engg.) 2001] (a) Oil (b) Ball bearings (c) Sand (d) Graphite 3. A block of mass 10 kg is placed on an inclined plane. When the angle of inclination is 30°, the block just begins to slide down the plane. The force of static friction is (a) 10 kg wt (d) 5 *kg wt* (b) 89 kg wt (c) 49 kg wt A vehicle of mass m is moving on a rough horizontal road with momentum P. If the coefficient of friction between the tyres and 4. the road be μ_{t} then the stopping distance is [CBSE PMT 2001] (b) $\frac{P^2}{2\mu m g}$ (d) $\frac{P^2}{2\mu m^2 g}$ (a) $\frac{P}{2\mu m g}$ (c) $\frac{P}{2\mu m^2 g}$ 5. A box is lying on an inclined plane what is the coefficient of static friction if the box starts sliding when an angle of inclination is 60° [KCET (Engg./Med.) 2000] (b) 1.732 (a) 1.173 (c) 2.732 (d) 1.677 6. A brick of mass 2 kg begins to slide down on a plane inclined at an angle of 45° with the horizontal. The force of friction will be [CPMT 2000] (a) 19.6 sin 45° (b) 19.6 cos 45° (c) 9.8 sin 45° (d) 9.8 cos 45° 7. To avoid slipping while walking on ice, one should take smaller steps because of the [BHU 1999] (a) Friction of ice is large (b) Larger normal reaction

CLICK HERE

Get More Learning Materials Here : 💶

	(c) Friction of ice is small		(d) Smaller normal rea	action			
	Two bodies having the same mass, 2 kg each have different surface areas $50m^2$ and $100m^2$ in contact with a horizontal plane.						
	the coefficient of friction is 0.2, the forces of friction that come into play when they are in motion will be in the ratio						
				[EAMCET (Med.) 1999			
	(a) 1:1	(b) 1:2	(c) 2:1	(d) 1:4			
•	Starting from rest, a body slides down a 45° inclined plane in twice the time it takes to slide down the same distance in the						
		efficient of friction between the bo		[CBSE PMT 1990			
	(a) 0.33	(b) 0.25	(c) 0.75	(d) 0.80			
0.	Brakes of very small contact area are not used although friction is independent of area, because friction						
	(a) Resists motion		(b) Causes wear and t	ear			
	(c) Depends upon the nat	ture of materials	(d) Operating in this c	ase is sliding friction			
1.	The angle between frictional force and the instantaneous velocity of the body moving over a rough surface is						
	(a) Zero		(b) <i>π</i> /2				
	(C) π		(d) Equal to the angle	of friction			
2.	What happens to the coefficient of friction, when the normal reaction is halved						
	(a) Halved		(b) Doubled				
	(c) No change		(d) Depends on the na	ature of the surface			
3.	What can be inferred regarding the limiting frictional force in the following four figures						
	$R \uparrow A$ A mg	R B mg		R D D mg			
		(b) $F_A > F_B > F_C > F_D$					
4.	A force of 98 Newton is rea	quired to drag a body of mass 100) <i>kg</i> on ice. The coefficient of	triction will be			
	(a) 0.98	(b) 0.89	(c) 0.49	(d) 0.1			

Get More Learning Materials Here : 🗾 CLICK HERE 📎

- **15.** A 60 kg body is pushed with just enough force to start it moving across a floor and the same force continues to act afterwards. The coefficients of static and sliding friction are 0.5 and 0.4 respectively. The acceleration of the body is
 - (a) $6 m / \sec^2$ (b) $4.9 m / \sec^2$ (c) $3.92 m / \sec^2$ (d) $1 m / \sec^2$

16. A particle is projected along a line of greatest slope up a rough plane inclined at an angle of 45° with the horizontal. If the coefficient of friction is $\frac{1}{2}$, then the retardation is

(a)
$$\frac{g}{\sqrt{2}}$$
 (b) $\frac{g}{2\sqrt{2}}$ (c) $\frac{g}{\sqrt{2}} \left[1 + \frac{1}{2} \right]$ (d) $\frac{g}{\sqrt{2}} \left[1 - \frac{1}{2} \right]$

17. A block moves down a smooth inclined plane of inclination θ . Its velocity on reaching the bottom is ν . If it slides down a rough inclined plane of same inclination its velocity on reaching the bottom is ν/n , where *n* is a number greater than 0. The coefficient of friction μ is given by

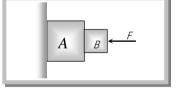
(a)
$$\mu = \tan \theta \left[1 - \frac{1}{n^2} \right]$$
 (b) $\mu = \cot \theta \left[1 - \frac{1}{n^2} \right]$ (c) $\mu = \tan \theta \left[1 - \frac{1}{n^2} \right]^{\frac{1}{2}}$ (d) $\mu = \cot \theta \left[1 - \frac{1}{n^2} \right]^{\frac{1}{2}}$

18. Consider a car moving along a straight horizontal road with a speed of 72 km/hr. If the coefficient of static friction between the tyres and the road is 0.5, the shortest distance in which the car can be stopped is $(g = 10 m / s^2)$

(a) 30 *m* (b) 40 *m* (c) 72 *m* (d) 20 *m*

- 19. All the surfaces shown in the figure are rough. The direction of friction on *B* due to *A* is
 - (a) Zero
 - (b) To the left
 - (c) Upwards
 - (d) Downwards
- **20.** A body of mass *M* just starts sliding down an inclined plane (rough) with inclination θ , such that $\tan \theta = 1/3$. The force acting on the body down the plane in this position is

CLICK HERE


(a) Mg (b) $\frac{Mg}{3}$ (c) $\frac{2}{3}Mg$ (d) $\frac{Mg}{\sqrt{10}}$

Advance level

21. Consider the following statements

Assertion (A): It is difficult to move a cycle along the road with its brakes on.

Reason (*R*) : Sliding friction is greater than rolling friction.

🕀 www.studentbro.in

Get More Learning Materials Here :

28	Friction			
	Of these statements			[AIIMS 2002]
	(a) Both A and R are true ar	nd the <i>R</i> is a correct explanation	of the A	
	(b) Both A and R are true bu	ut the R is not a correct explanat	tion of the A	
	(c) A is true but the R is false	5e		
	(d) Both A and R are false			
	(e) A is false but the R is true	le		
22.	, .	inclined plane having coefficien ncline, the angle between the inc		I reaction is twice that of the resultant is [EAMCET (Engg.) 2000]
	(a) 15°	(b) 30°	(c) 45°	(d) 60°
23.	5	on a rough inclined plane making plane is 0.7. The frictional force o		rizontal. The coefficient of static friction [IIT-JEE 1980]
	(a) 9.8 N	(b) $0.7 \times 9.8 \times \sqrt{3} N$	(c) $9.8 \times \sqrt{3} N$	(d) $0.7 \times 9.8 N$
24.	A body of weight <i>W</i> is lying whether the body along the sur		urface. If the angle of friction is	heta, then the minimum force required to
	(a) W tan θ	(b) $W\cos\theta$	(c) $W \sin \theta$	(d) $W \cos \theta$
25.		on a rough horizontal surface as e coefficient of friction is μ . The l	5	<i>= Mg</i> acts on the block. It is inclined to surface only when
	(a) $\tan \theta \ge \mu$			
	(b) $\cot \theta \ge \mu$			$F = Mg \theta$
	(c) $\tan \theta / 2 \ge \mu$			M
	(d) $\cot \theta / 2 \ge \mu$			
26.	A plane is inclined at an any minimum force that has to be	the coefficient of friction is μ , then the nove up the inclined plane is		
	(a) <i>mg</i> sin θ		(b) $\mu mg \cos \theta$	
	(c) $\mu mg \cos\theta - mg \sin\theta$		(d) $\mu mg \cos\theta + mg \sin\theta$	θ
27.	•		, ,	ontal surface. The coefficient of friction face is μ_2 . What maximum horizontal
	force can be applied to the lo	ower block so that the two block	ks move without separation	

- (a) $(M + m)(\mu_2 \mu_1)g$
- (b) $(M m)(\mu_2 \mu_1)g$
- (c) $(M m)(\mu_2 + \mu_1)g$

т

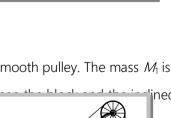
М

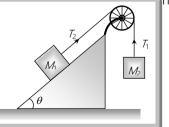
Get More Learning Materials Here : 💶

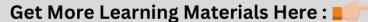
Block

Slab

M

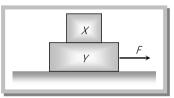

 M_2


(d) $(M + m)(\mu_2 + \mu_1)g$

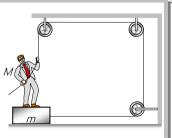

- **28.** A block of mass M_1 is placed on a slab of mass M_2 . The slab lies on a frictionless horizontal surface. The coefficient of static friction between the block and slab is μ_1 and that of dynamic friction is μ_2 . A force *F* acts on the block M_1 . Take $g = 10 \text{ ms}^{-2}$. If $M_1 = 10 \text{ kg}$, $M_2 = 30 \text{ kg}$, $\mu_1 = 0.5$, $\mu_2 = 0.15$ and F = 40 N, what will be the acceleration with which the slab will move
 - (a) $5 m s^{-2}$
 - (b) 2 ms⁻²
 - (c) $1 m s^{-2}$
 - (d) Zero

29. In the above problem if F = 100 N, what will be the acceleration with which the slab will move (a) $5 ms^{-2}$ (b) $2 ms^{-2}$ (c) $1 ms^{-2}$ (d) None of these

- **30.** A block *X* of mass 4 *kg* is lying on another block *Y* of mass 8 *kg*. As shown in the figure. When the force acting on *X* is 12*N*, block *X* is on the verge of slipping on *Y*. The force *F* in Newton necessary to make both *X* and *Y* move simultaneously will be
 - (a) 36
 - (b) 3.6
 - (c) 0.36
 - (d) 3.6
- **31.** Two masses 10 kg and 5 kg are connected by a string passing over a pulley as shown. If the coefficient of friction be 0.15, then the minimum weight that may be placed on 10 kg to stop motion is
 - (a) 18.7 kg
 - (b) 23.3 *kg*
 - (c) 32.5 *kg*
 - (d) 44.3 kg
- 32. Two blocks of mass M_1 and M_2 are connected with a string which passes over a smooth pulley. The mass M_1 is placed on a rough inclined plane as shown in the figure. The coefficient of friction be is μ . What should be the maximum mass M_2 so that block M_1 slides downward:
 - (a) $M_2 = M_1(\sin\theta + \mu\cos\theta)$
 - (b) $M_2 = M_1(\sin\theta \mu\cos\theta)$
 - (c) $M_2 = M_1 / (\sin \theta + \mu \cos \theta)$
 - (d) $M_2 = M_1 / (\sin \theta \mu \cos \theta)$



🕀 www.studentbro.in



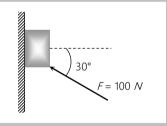
10 kg

30 Friction

33.		car starts from rest to cover a distance s. the coefficient of friction between the road and the tyres is μ . The minimum time in which the car can cover the distance is proportional to				
	(a) <i>μ</i>	(b) $\sqrt{\mu}$	(c) $\frac{1}{\mu}$	(d) $\frac{1}{\sqrt{\mu}}$		
34.	An engine of mass 50,000 kg	g pulls a coach of mass 40,0	000 <i>kg</i> . If there is a resistance of 1	N per 100 <i>kg</i> acting on both the engine		
	and the coach, and if the driv	ving force of the engine be	4,500 <i>N</i> , then the acceleration of th	ne engine is		
	(a) $0.08 m / s^2$	(b) Zero	(c) $0.04 m / s^2$	(d) None of these		
35.	In the above question, then te	ension in the coupling is				
	(a) 2,000 N	(b) 1,500 N	(c) 500 N	(d) 1000 N		
36.			5	ne mass of the plane is $10^4 kg$ and the uniformly during take off. What is the		
	(a) 1 <i>m/s</i> ²	(b) 2 <i>m/s</i> ²	(c) 3 <i>m/s</i> ²	(d) $4 m/s^2$		
37.	The force required to just mo is angle of friction and θ is the			to just prevent it from sliding down. If ϕ		
	(a) $\tan \theta = \tan \phi$	(b) $\tan \theta = 2 \tan \phi$	(c) $\tan \theta = 3 \tan \phi$	(d) $\tan \phi = 3 \tan \theta$		
38.	A body is on a rough horizon the angle of friction then for t			ane at an angle ϕ with the vertical. If $ heta$ is		
	(a) $\phi > \theta$	(b) $\phi < \theta$	(C) $\phi = heta$	(d) ϕ can take up any value		
39.	In the arrangement shown W_2	$W_1 = 200 N, W_2 = 100 N, \mu$	= 0.25 for all surfaces in contact. T	The block W_1 just slides under the block		
	(a) A pull of 50 <i>N</i> is to be a	applied on W_1		B		

- (b) A pull of 90N is to be applied on W_1
- (c) Tension in the string AB is $10\sqrt{2}N$
- (d) Tension in the string AB is $20\sqrt{2}N$
- 40. A board of mass m is placed on the floor and a man of mass M is standing on the board as shown. The coefficient of friction between the board and the floor is μ . The maximum force that the can exert on he represented that the board does not slip on the floor is
 - (a) $F = \mu(M+m)g$
 - (b) $F = \mu m g$

Get More Learning Materials Here : 📕

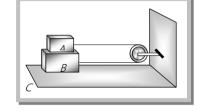

🕀 www.studentbro.in

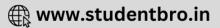
(c)
$$F = \frac{\mu Mg}{\mu + 1}$$

(d)
$$F = \frac{\mu (M + m)g}{\mu + 1}$$

41. A body slides over an inclined plane forming an angle of 45° with the horizontal. The distance *x* travelled by the body in time *t* is described by the equation $x = kt^2$, where k = 1.732. The coefficient of friction between the body and the plane has a value

(a)
$$\mu = 0.5$$
 (b) $\mu = 1$ (c) $\mu = 0.25$ (d) $\mu = 0.75$


- **42.** Two blocks *A* and *B* of masses *m* and *M* respectively are placed on each other and their combination rests on a fixed horizontal surface *C*. A light string passing over the smooth light pulley is used to connect *A* and *B* as shown. The coefficient of sliding friction between all surfaces in contact is μ . If *A* is dragged with a force *F* then for both *A* and *B* to move with a uniform speed we have
 - (a) $F = \mu(M+m)g$
 - (b) $F = \mu m g$
 - (c) $F = \mu(3M+m)g$
 - (d) $F = \mu(3m + M)g$
- **43.** A force of 100 *N* is applied on a block of mass 3 *kg* as shown in figure. The coefficient of friction between the surface of the block is 1/4. The friction force acting on the block is
 - (a) 15 *N* downwards
 - (b) 25 Nupwards
 - (c) 20 N downwards
 - (d) 20 N upwards



${\cal A}$ nswer Sheet (Practice problems)

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
b	с	d	d	b	а	с	a	с	b
11.	12.	13.	14.	15.	16.	17.	18.	19.	20.
с	с	а	d	d	с	a	b	с	d
21.	22.	23.	24.	25.	26.	27.	28.	29.	30.
a	с	а	a	с	d	d	с	d	а
31.	32.	33.	34.	35.	36.	37.	38.	39.	40.
b	b	d	С	a	b	с	а	b, d	d
41.	42.	43.							
a	d	с							

Get More Learning Materials Here : 💻

